Суббота, 28.12.2024, 11:12
Приветствую Вас Гость | Регистрация | Вход

Учебный портал 2009-2016

Меню сайта
Категории раздела
№1 [2]
Все для учителей!
Информатика [60]
Тут для учителей информатики
Математика [102]
Тут все для учителей математики
Русский язык [33]
Для учителей русского языка
География [20]
Тут все только для учителя географии
Физика и астрономия [29]
Про физику
Химия и Биология [35]
История и обществознание [33]
Библиотекарю [6]
Начальные классы [22]
Экономика [13]
Для учителей экономики
Директору и завучу школы [12]
Иностранные языки [18]
Физическая культура [16]
Технология [13]
Психологу [14]
ОБЖ [15]
Софт для учителя [25]
Готовимся к ЕГЭ [21]
Школьные сценарии [8]
Поиск
Вход на сайт
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Все файлы

Главная » Файлы » Все для Учителя!!! » Математика [ Добавить материал ]

Эстетическое воспитание на уроках математики
[ · Скачать удаленно () ] 10.09.2009, 16:16
О роли и значении уроков математики в воспитании правильного и дисциплинированного мышления говорилось и писалось очень много. Напротив, о влиянии математических знаний на эстетическое формирование личности учащегося не сказано почти ничего. Всегда предполагалось, что по абстрактности своего предмета математическая наука не может давать учащимся тех непосредственных впечатлений, эстетически воздействующих и формирующих характер образов, картин, эмоций, какими располагает история и литература. А..Г..Мордкович сформулировал мысль:" Математика – это самая главная гуманитарная наука, которая позволяет упорядочить свои мысли, разложить по полочкам нужную информацию". Математика единственный предмет, который учит учащихся систематизации мышления, точности излагаемого, яркости определения. Действительно, какой другой предмет научит учеников кратко, но точно излагать свою мысль, достоверно передавать описание того или иного предмета. Именно на математике мы применяем такой опыт, как запись условия задачи математическим языком. 

Глубокая и важная черта математических заданий состоит в присущем им в значительном большинстве случаев творческом характере. В то время как в большинстве других областей знания выполнение задания, за немногими исключениями, требует от учащегося лишь определенных знаний и навыков – в лучшем случае еще умение стройно и стилистически излагать эти знания, - решение математической задачи, как правило, предполагает изобретение специально ведущего к поставленной цели рассуждения и тем самым становиться – пусть весьма скромным – творческим актом. Именно этот творческий, исследовательский характер математических заданий более чем что-либо другое влечет к себе молодые силы растущего и крепнущего интеллекта учащегося. Тот, кто изведал благородную радость творческого достижения, никогда уже не пожалеет усилий, чтобы вновь ее испытать.

Математика в отличие от большинства других преподаваемых в школе дисциплин имеет предметом своего обучения не непосредственно вещи, составляющий нас окружающий мир, а количественные отношения и пространственные формы, свойственные этим вещам.

Математика владеет не только истиной, но и высшей красотой-красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства. (Б. Рассел)

Таким образом, в математике как ни в какой другой науке находит выражение важнейший критерий научной красоты - единство в многообразии. Математика раскрывает перед человеком красоту внутренних связей, существующих в природе, и указывает на внутреннее единство мира. 

Язык математики – это особый язык науки. В отличии от естественного языка, который в основном классифицирует предметы и потому является языком качественным, язык математики прежде всего количественный. Количественный язык представляет собой дальнейшее развитие и уточнение обычного качественного языка.

Важнейшим преимуществом количественного языка математики является краткость и точность. В этом его огромное преимущество и в этом его красота, ибо именно в математическом языке претворяется один из основных признаков красоты в науке: сведение сложности к простоте.

Итак, математика – это не только самостоятельная наука о “математических структурах”, но и язык других наук, язык единый, универсальный, точный, простой и красивый. Хорошо сказал об этих качествах математики советский математик С.Л.Соболев: “Есть одна наука, без которой невозможна никакая другая. Это математика. Ее понятия, представления и символы служат языком, на котором говорят, пишут и думают другие науки. Она объясняет закономерности сложных явлений, сводя их к простым, элементарным явлениям природы. Она предсказывает и предвычисляет далеко вперед с огромной точностью ход вещей.”

Что можно рассматривать на уроках математики, предвещающих красоту, стройность, закономерность? И как это связать с искусством и живописью?

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство. (Г.Вейгель)

Т.О., симметрия воспринимается человеком как проявление закономерности, порядка, царящего в природе. Итак, целесообразность симметрических форм была осознана человечеством в доисторические времена, а в сознании древних греков симметрия стала олицетворением закономерности, целесообразности, а следовательно и красоты.

Пушкин А.С. рисует величавую Царевну – Лебедь со звездой во лбу (красота – симметрия) и окривевших злодеек ткачиху с поварихой (уродство – асимметрия).

Пропорция в искусстве определяет соотношение величин элементов художественного произведения. В эстетике пропорция, как и симметрия, является составным элементом категории меры и выражает закономерность структуры эстетического образа.

Возьмем простой пример: деление отрезка прямой. Если отрезок разделить пополам, зеркально – симметрично, то такое деление выглядит уравновешенным, мертвым. Если же точку деления взять слишком близко к одному из концов отрезка, то новая конфигурация будет чересчур неуравновешенной. Только некоторая “золотая середина”, которая не является геометрической серединой, обеспечивает желаемое единство симметрии и асимметрии.

Такое “радующее глаз” деление отрезка, по преданию, было известно еще Пифагору и называлось им “золотой пропорцией”. У древних египтян, “золотая пропорция” определяется как деление отрезка на две неравные части, при котором меньшая из них так относится к большей, как последняя ко всей длине отрезка. Художник и инженер Леонардо да Винчи называл ее “Sectio aurea” (золотое сечение), а математик и астроном Иоганн Кеплер, обнаруживший “золотую пропорцию” в ботанике, называл ее “Sectio divina” (божественное сечение).

“Золотое сечение” мы находим всюду: в изобразительном и прикладном искусстве, в архитектуре и музыке, в литературе, в предметах быта и машинах. 

Каждому человеку нужно знать, какими были и как жили его давние и недавние предки, что довелось испытать и пережить народам нашей Родины на протяжении прошедших веков.

Категория: Математика | Добавил: @RUS@
Просмотров: 910 | Загрузок: 401 | Комментарии: 2 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]