Статистика |
---|
Онлайн всего: 2 Гостей: 2 Пользователей: 0 |
|
Все файлы
Теория алгоритмов
| 19.09.2009, 20:03 |
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также оказавшееся эквивалентным вышеперечисленным.
Одним из наиболее удачных стандартизованных вариантов алгоритма является введённое А. А. Марковым понятие нормального алгоритма. Оно было разработано десятью годами позже работ Тьюринга, Поста, Чёрча и Клини в связи с доказательством алгоритмической неразрешимости ряда алгебраических проблем.
Следует отметить также немалый вклад в теорию алгоритмов, сделанный Д. Кнутом, A. Ахо и Дж. Ульманом. Одной из лучших работ на эту тему является книга «Алгоритмы: построение и анализ» Томаса Х. Кормена, Чарльза И. Лейзерсона, Рональда Л. Ривеста, Клиффорда Штайна.
[править] Модели вычислений Машина Тьюринга Лямбда-исчисление — рассматривается пара — λ-выражение и его аргумент, — а вычислением считается применение, или апплицирование первого члена пары ко второму. Это позволяет отделить функцию и то, к чему она применяется. В более общем случае вычислением считаются цепочки, начинающиеся с исходного λ-выражения, за которым следут конечная последовательность λ-выражений, каждое из которых получается из предыдущего применением β-редукции, то есть правила подстановки. Комбинаторная логика — трактовка вычисления сходна с λ-исчислением, но имеются и важные отличия (например, комбинатор неподвижной точки Y имеет нормальную форму в комбинаторной логике, а в λ-исчислении — не имеет). Комбинаторная логика была первоначально разработана для изучения природы парадоксов и для построения концептуально ясных оснований математики, причем представление о переменной исключалось вовсе, что помогало прояснить роль и место переменных в математике.
[править] Тезис Чёрча — Тьюринга и алгоритмически неразрешимые проблемы Основные статьи: Тезис Чёрча — Тьюринга, Машина Тьюринга
Алан Тьюринг высказал предположение (известное как Тезис Чёрча — Тьюринга), что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Уточнение представления о вычислимости на основе понятия машины Тьюринга (и других эквивалентных ей понятий) открыло возможности для строгого доказательства алгоритмической неразрешимости различных массовых проблем (то есть проблем о нахождении единого метода решения некоторого класса задач, условия которых могут варьироваться в известных пределах). Простейшим примером алгоритмически неразрешимой массовой проблемы является так называемая проблема применимости алгоритма (называемая также проблемой остановки). Она состоит в следующем: требуется найти общий метод, который позволял бы для произвольной машины Тьюринга (заданной посредством своей программы) и произвольного начального состояния ленты этой машины определить, завершится ли работа машины за конечное число шагов, или же будет продолжаться неограниченно долго.
В течение первого десятилетия истории теории алгоритмов неразрешимые массовые проблемы были обнаружены лишь внутри самой этой теории (сюда относится описанная выше проблема применимости), а также внутри математической логики (проблема выводимости в классическом исчислении предикатов). Поэтому считалось, что теория алгоритмов представляет собой обочину математики, не имеющую значения для таких её классических разделов, как алгебра или анализ. Положение изменилось после того, как А. А. Марков и Э. Л. Пост в 1947 году установили алгоритмическую неразрешимость известной в алгебре проблемы равенства для конечнопорождённых и конечноопределённых полугрупп (т. н. проблемы Туэ). Впоследствии была установлена алгоритмическая неразрешимость и многих других «чисто математических» массовых проблем. Одним из наиболее известных результатов в этой области является доказанная Ю. В. Матиясевичем алгоритмическая неразрешимость десятой проблемы Гильберта.
[править] Современное состояние теории алгоритмов
В настоящее время теория алгоритмов развивается, главным образом, по трем направлениям. Классическая теория алгоритмов изучает проблемы формулировки задач в терминах формальных языков, вводит понятие задачи разрешения, проводит классификацию задач по классам сложности (P, NP и др.). Теория асимптотического анализа алгоритмов рассматривает методы получения асимптотических оценок ресурсоемкости или времени выполнения алгоритмов, в частности, для рекурсивных алгоритмов. Асимптотический анализ позволяет оценить рост потребности алгоритма в ресурсах (например, времени выполнения) с увеличением объема входных данных. Теория практического анализа вычислительных алгоритмов решает задачи получения явных функции трудоёмкости, интервального анализа функций, поиска практических критериев качества алгоритмов, разработки методики выбора рациональных алгоритмов.
[править] Анализ трудоёмкости алгоритмов
Целью анализа трудоёмкости алгоритмов является нахождение оптимального алгоритма для решения данной задачи. В качестве критерия оптимальности алгоритма выбирается трудоемкость алгоритма, понимаемая как количество элементарных операций, которые необходимо выполнить для решения задачи с помощью данного алгоритма. Функцией трудоемкости называется отношение, связывающие входные данные алгоритма с количеством элементарных операций.
Трудоёмкость алгоритмов по-разному зависит от входных данных. Для некоторых алгоритмов трудоемкость зависит только от объема данных, для других алгоритмов — от значений данных, в некоторых случаях порядок поступления данных может влиять на трудоемкость. Трудоёмкость многих алгоритмов может в той или иной мере зависеть от всех перечисленных выше факторов.
Одним из упрощенных видов анализа, используемых на практике, является асимптотический анализ алгоритмов. Целью асимптотического анализа является сравнение затрат времени и других ресурсов различными алгоритмами, предназначенными для решения одной и той же задачи, при больших объемах входных данных. Используемая в асимптотическом анализе оценка функции трудоёмкости, называемая сложностью алгоритма, позволяет определить, как быстро растет трудоёмкость алгоритма с увеличением объема данных. В асимптотическом анализе алгоритмов используются обозначения, принятые в математическом асимптотическом анализе. Ниже перечислены основные оценки сложности.
|
Категория: Информатика | Добавил: @RUS@
|
Просмотров: 761 | Загрузок: 0
|
| Рейтинг: 0.0/0 |
Добавлять комментарии могут только зарегистрированные пользователи. [ Регистрация | Вход ]
|